Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282735

RESUMO

ObjectivesSeveral countries have authorized a booster vaccine campaign to combat the spread of COVID-19. Data on persistence of booster vaccine-induced immunity against new Omicron subvariants are still limited. Therefore, our study aimed to determine the serological immune response of COVID-19 booster after CoronaVac-priming. MethodsA total of 187 CoronaVac-primed participants were enrolled and received an inactivated (BBIBP), viral vector (AZD1222) or mRNA vaccine (full-/half-dose BNT162B2, full-/half-dose mRNA-1273) as a booster dose. The persistence of humoral immunity both binding and neutralizing antibodies against wild-type and Omicron was determined on day 90- 120 after booster. ResultsA waning of total RBD immunoglobulin (Ig) levels, anti-RBD IgG, and neutralizing antibodies against Omicron BA.1, BA.2, and BA.4/5 variants was observed 90-120 days after booster vaccination. Participants who received mRNA-1273 had the highest persistence of the immunogenicity response, followed by BNT162b2, AZD1222, and BBIBP-CorV. The responses between full and half doses of mRNA-1273 were comparable. The percentage reduction of binding antibody ranged from 50% to 75% among all booster vaccine. ConclusionsThe antibody response substantially waned after 90-120 days post-booster dose. The heterologous mRNA and the viral vector booster demonstrated higher detectable rate of humoral immune responses against the Omicron variant compared to the inactivated BBIBP booster. Nevertheless, an additional fourth dose is recommended to maintain immune response against infection. HighlightsO_LIThe persistence of antibody responses is different among three vaccine platforms. C_LIO_LIHighly remained antibody levels were observed with the mRNA and viral vector booster. C_LIO_LIThe half-dose mRNA-1273 can be used interchangeably with the full-dose mRNA-1273. C_LIO_LIThe neutralizing activity against BA.5 was lower than wild type and BA.2 subvariant. C_LIO_LIA fourth dose is recommended for individuals who received an inactivated booster. C_LI

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-509178

RESUMO

Phosphodiesterase 12 (PDE12) is a negative regulator of the type 1 interferon (IFN) response and here we show that PDE12 inhibitors (lead compounds 63 and 17) are associated with increased RNAseL activity, are well tolerated at the therapeutic range and inhibit, both in vitro and in vivo, the replication of several RNA viruses including hepatitis C virus (HCV), dengue virus (DENV), West Nile Virus (WNV) and SARS-CoV-2.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-500063

RESUMO

Some COVID-19 patients are unable to clear their infection or are at risk of severe disease, requiring treatment with neutralising monoclonal antibodies (nmAb) and/or antivirals. The rapid roll-out of novel therapeutics means there is limited understanding of the likely genetic barrier to drug resistance. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to the detection of emerging drug resistance. Here we report the accrual of mutations in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the epitopes of the respective nmAbs. For casirivimab+imdevimab these are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275865

RESUMO

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARSCoV2. However, the maintenance of such responses, and hence protection from disease, requires careful characterisation. In a large prospective study of UK healthcare workers (Protective immunity from T cells in Healthcare workers (PITCH), within the larger SARSCoV2 immunity and reinfection evaluation (SIREN) study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. We make three observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and memory B cell responses were maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels, broadened neutralising activity against variants of concern including omicron BA.1, BA.2 and BA.5, and boosted T cell responses above the 6 month level post dose 2. Thirdly, prior infection maintained its impact driving larger as well as broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. In conclusion, broadly cross-reactive T cell responses are well maintained over time, especially in those with combined vaccine and infection-induced immunity (hybrid immunity), and may contribute to continued protection against severe disease.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276016

RESUMO

ObjectivesThe SARS-CoV-2 Omicron variant presents numerous mutations potentially able to evade neutralizing antibodies (NAbs) elicited by COVID-19 vaccines. Therefore, this study aimed to provide evidence on a heterologous booster strategy to overcome the waning immunity against Omicron variants. MethodsParticipants who completed Oxford/AstraZeneca (hereafter AZD1222) for 5-7 months were enrolled. The reactogenicity and persistence of immunogenicity in both humoral and cellular response after a homologous or heterologous booster with the AZD1222 and mRNA vaccines (BNT162B2, full or half-dose mRNA-1273) administered six months after primary vaccination were determined. ResultsTotal 229 individuals enrolled, a waning of immunity was observed 5-7 months after the AZD1222-primed. Total RBD immunoglobulin (Ig) levels, anti-RBD IgG and focus reduction neutralization test against Omicron BA.1 and BA.2 and T cell response peaked 14-28 days after booster vaccination. Both the full and half dose of mRNA-1273 induced the highest response, followed by BNT162b2 and AZD1222. At 90 days, the persistence of immunogenicity was observed among all mRNA-boosted individuals. Adverse events were acceptable and well tolerated for all vaccines. ConclusionsA heterologous mRNA booster provided a significantly superior boost of binding and NAbs levels against the Omicron variant compared to a homologous booster in individuals with AZD1222-primed vaccinations.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276959

RESUMO

This study examined the neutralizing activity and receptor binding domain (RBD) antibody levels against wild-type and omicron BA.1 and BA.2 variants in individuals who received three doses of COVID-19 vaccination. The relationship between the SARS-CoV-2 RBD antibody against wild-type and live virus neutralizing antibody titers against omicron BA.1 and BA.2 variants was examined. In total, 310 sera samples from individuals after booster vaccination (third dose) vaccination were tested for specific IgG wild-type SARS-CoV-2 RBD and the omicron BA.1 surrogate virus neutralization test (sVNT). The live virus neutralization assay against omicron BA.1 and BA.2 was performed using the foci-reduction neutralization test (FRNT50). The anti-RBD IgG strongly correlated with FRNT50 titers against BA.1 and BA.2. Non-linear regression showed that anti-RBD IgG with [≥]148 BAU/mL and [≥]138 BAU/mL were related to detectable FRNT50 titers ([≥]1:20) against BA.1 and BA.2, respectively. A moderate correlation was observed between the sVNT and FRNT50 titers. At detectable FRNT50 titers ([≥]1:20), the predicted sVNT for BA.1 and BA.2 were [≥]10.57% and [≥]11.52%, respectively. The study identified anti-RBD IgG and sVNT levels that predict detectable neutralizing antibodies against omicron variants. Assessment and monitoring of protective immunity support vaccine policies and will help identify optimal timing for booster vaccination.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-492554

RESUMO

The Omicron lineage of SARS-CoV-2, first described in November 2021, spread rapidly to become globally dominant and has split into a number of sub-lineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africas Gauteng region uncovered two new sub-lineages, BA.4 and BA.5 which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences and, although closely related to BA.2, contain further mutations in the receptor binding domain of spike. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by serum from triple AstraZeneca or Pfizer vaccinated individuals compared to BA.1 and BA.2. Furthermore, using serum from BA.1 vaccine breakthrough infections there are likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22271735

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has been a serious healthcare problem worldwide since December 2019. The third dose of heterologous vaccine was recently approved by World Health Organization. The present study compared the reactogenicity and immunogenicity of the reduced and standard third booster dose of the BNT162b2 and mRNA-1273 vaccine in adults who previously received the two-dose CoronaVac vaccine. Results showed that headache, joint pain, and diarrhea were more frequent in the 15 g-than the 30 g-BNT162b2 groups, whereas joint pain and chilling were more frequent in the 100 g-than the 50 g-mRNA-1273 groups. No significant differences in immunogenicity were detected. These findings demonstrate that the reduced dose of the mRNA vaccines elicited antibody responses against the SARS-CoV-2 delta and omicron variants that were comparable to the standard dose. The reduced dose could be used to increase vaccine coverage in situations of limited global vaccine supply. HighlightsO_LIThe 15 g- and 30 g-BNT162b2, and 50 g- and 100 g-mRNA-1273 booster doses were compared C_LIO_LIBooster vaccination with the mRNA vaccine elicits high Ig and IgG anti-RBD in CoronaVac-vaccinated adults C_LIO_LINo differences were observed in antibody responses after the reduced or standard booster dose of the mRNA vaccine in CoronaVac-vaccinated adults C_LIO_LINeutralizing antibodies against the delta and omicron variants were significantly higher after the booster dose C_LIO_LINeutralizing antibody titers were lower against the omicron variant than the delta variant in all vaccinated adults C_LI

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269986

RESUMO

BackgroundThe use of an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (CoronaVac) against SARS-CoV-2 is implemented worldwide. However, waning immunity and breakthrough infections have been observed. Therefore, we hypothesized that the heterologous booster might improve the protection against the delta and omicron variants. MethodsA total of 224 individuals who completed the two-dose CoronaVac for six months were included. We studied reactogenicity and immunogenicity following a heterologous booster with the inactivated vaccine (BBIBP), the viral vector vaccine (AZD1222), and the mRNA vaccine (both BNT162B2 and mRNA-1273). We also determined immunogenicity at 3- and 6-months boosting intervals. ResultsThe solicited adverse events (AEs) were mild to moderate and well-tolerated. Total RBD immunoglobulin (Ig), anti-RBD IgG, focus reduction neutralization test (FRNT50) against delta and omicron variants, and T cell response were highest in the mRNA-1273 group followed by the BNT162b2, AZD1222 and BBIBP groups, respectively. We also witnessed a higher total Ig anti-RBD in the long-interval than in the short-interval groups. ConclusionsAll four booster vaccines significantly increased binding and NAbs in individuals immunized with two doses of CoronaVac. The present evidence may benefit vaccine strategies development to thwart variants of concern, including the omicron variant.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-471045

RESUMO

On the 24th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267534

RESUMO

In this report, we present live neutralisation titres against SARS-CoV-2 Omicron variant, compared with neutralisation against Victoria, Beta and Delta variants. Sera from day-28 post second-dose were obtained from participants in the Com-COV2 study who had received a two-dose COVID-19 vaccination schedule with either AstraZeneca (AZD1222) or Pfizer (BNT162b2) vaccines. There was a substantial fall in neutralisation titres in recipients of both AZD1222 and BNT16b2 primary courses, with evidence of some recipients failing to neutralise at all. This will likely lead to increased breakthrough infections in previously infected or double vaccinated individuals, which could drive a further wave of infection, although there is currently no evidence of increased potential to cause severe disease, hospitalization or death.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-447308

RESUMO

There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), high titre binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) are induced. In addition, a strong and polyfunctional T cell response was measured in these booster regimens. These data support the ongoing clinical development and testing of this new variant vaccine.

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256571

RESUMO

It is unclear whether prior endemic coronavirus infections affect COVID-19 severity. Here, we show that in cases of fatal COVID-19, antibody responses to the SARS-COV-2 spike are directed against epitopes shared with endemic beta-coronaviruses in the S2 subunit of the SARS-CoV-2 spike protein. This immune response is associated with the compromised production of a de novo SARS-CoV-2 spike response among individuals with fatal COVID-19 outcomes.

14.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-435194

RESUMO

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.

15.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-426463

RESUMO

Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirms the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20205831

RESUMO

Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, detection of seroconversion after vaccination, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests have a long history in blood typing, and general serology through linkage of reporter molecules to the red cell surface. They do not require special equipment, are read by eye, have short development times, low cost and can be applied as a Point of Care Test (POCT). We describe a red cell agglutination test for the detection of antibodies to the SARS-CoV-2 receptor binding domain (RBD). We show that the Haemagglutination Test ("HAT") has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. The HAT can be titrated, detects rising titres in the first five days of hospital admission, correlates well with a commercial test that detects antibodies to the RBD, and can be applied as a point of care test. The developing reagent is composed of a previously described nanobody to a conserved glycophorin A epitope on red cells, linked to the RBD from SARS-CoV-2. It can be lyophilised for ease of shipping. We have scaled up production of this reagent to one gram, which is sufficient for ten million tests, at a cost of [~]0.27 UK pence per test well. Aliquots of this reagent are ready to be supplied to qualified groups anywhere in the world that need to detect antibodies to SARS-CoV-2, but do not have the facilities for high throughput commercial tests.

17.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-148387

RESUMO

The COVID-19 pandemic has had unprecedented health and economic impact, but currently there are no approved therapies. We have isolated an antibody, EY6A, from a late-stage COVID-19 patient and show it neutralises SARS-CoV-2 and cross-reacts with SARS-CoV-1. EY6A Fab binds tightly (KD of 2 nM) the receptor binding domain (RBD) of the viral Spike glycoprotein and a 2.6[A] crystal structure of an RBD/EY6A Fab complex identifies the highly conserved epitope, away from the ACE2 receptor binding site. Residues of this epitope are key to stabilising the pre-fusion Spike. Cryo-EM analyses of the pre-fusion Spike incubated with EY6A Fab reveal a complex of the intact trimer with three Fabs bound and two further multimeric forms comprising destabilized Spike attached to Fab. EY6A binds what is probably a major neutralising epitope, making it a candidate therapeutic for COVID-19.

18.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-134551

RESUMO

COVID-19 is an ongoing global crisis in which the development of effective vaccines and therapeutics will depend critically on understanding the natural immunity to the virus, including the role of SARS-CoV-2-specific T cells. We have conducted a study of 42 patients following recovery from COVID-19, including 28 mild and 14 severe cases, comparing their T cell responses to those of 16 control donors. We assessed the immune memory of T cell responses using IFN{gamma} based assays with overlapping peptides spanning SARS-CoV-2 apart from ORF1. We found the breadth, magnitude and frequency of memory T cell responses from COVID-19 were significantly higher in severe compared to mild COVID-19 cases, and this effect was most marked in response to spike, membrane, and ORF3a proteins. Total and spike-specific T cell responses correlated with the anti-Spike, anti-Receptor Binding Domain (RBD) as well as anti-Nucleoprotein (NP) endpoint antibody titre (p<0.001, <0.001 and =0.002). We identified 39 separate peptides containing CD4+ and/or CD8+ epitopes, which strikingly included six immunodominant epitope clusters targeted by T cells in many donors, including 3 clusters in spike (recognised by 29%, 24%, 18% donors), two in the membrane protein (M, 32%, 47%) and one in the nucleoprotein (Np, 35%). CD8+ responses were further defined for their HLA restriction, including B*4001-restricted T cells showing central memory and effector memory phenotype. In mild cases, higher frequencies of multi-cytokine producing M- and NP-specific CD8+ T cells than spike-specific CD8+ T cells were observed. They furthermore showed a higher ratio of SARS-CoV-2-specific CD8+ to CD4+ T cell responses. Immunodominant epitope clusters and peptides containing T cell epitopes identified in this study will provide critical tools to study the role of virus-specific T cells in control and resolution of SARS-CoV-2 infections. The identification of T cell specificity and functionality associated with milder disease, highlights the potential importance of including non-spike proteins within future COVID-19 vaccine design.

19.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20118554

RESUMO

Effective public-health measures and vaccination campaigns against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against the ectodomain and the receptor-binding domain of the spike protein as well as the nucleocapsid protein of SARS-CoV-2. We used TRABI for continuous seromonitoring of hospital patients and healthy blood donors (n=72222) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). Seroprevalence peaked in May 2020 and rose again in November 2020 in both cohorts. Validations of results included antibody diffusional sizing and Western Blotting. Using an extended Susceptible-Exposed-Infectious-Removed model, we found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020 in the population of the canton of Zurich. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19 and up to the timepoint of survey participation. Crucially, we found no evidence for a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2- infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.

20.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-079202

RESUMO

There are as yet no licenced therapeutics for the COVID-19 pandemic. The causal coronavirus (SARS-CoV-2) binds host cells via a trimeric Spike whose receptor binding domain (RBD) recognizes angiotensin-converting enzyme 2 (ACE2), initiating conformational changes that drive membrane fusion. We find that monoclonal antibody CR3022 binds the RBD tightly, neutralising SARS-CoV-2 and report the crystal structure at 2.4 [A] of the Fab/RBD complex. Some crystals are suitable for screening for entry-blocking inhibitors. The highly conserved, structure-stabilising, CR3022 epitope is inaccessible in the prefusion Spike, suggesting that CR3022 binding would facilitate conversion to the fusion-incompetent post-fusion state. Cryo-EM analysis confirms that incubation of Spike with CR3022 Fab leads to destruction of the prefusion trimer. Presentation of this cryptic epitope in an RBD-based vaccine might advantageously focus immune responses. Binders at this epitope may be useful therapeutically, possibly in synergy with an antibody blocking receptor attachment. HighlightsO_LICR3022 neutralises SARS-CoV-2 C_LIO_LINeutralisation is by destroying the prefusion SPIKE conformation C_LIO_LIThis antibody may have therapeutic potential alone or with one blocking receptor attachment C_LI

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...